
Centralized Sparse Representation for Image Restoration

Weisheng Dong
Sch. of Elec. Engineering
Xidian University, China

wsdong@mail.xidian.edu.cn

Lei Zhang
Dept. of Computing

The Hong Kong Polytechnic Univ.
cslzhang@comp.polyu.edu.hk

Guangming Shi
Sch. of Elec. Engineering
Xidian University, China
gmshi@xidian.edu.cn

Abstract

This paper proposes a novel sparse representation model
called centralized sparse representation (CSR) for image
restoration tasks. In order for faithful image reconstruc-
tion, it is expected that the sparse coding coefficients of
the degraded image should be as close as possible to those
of the unknown original image with the given dictionary.
However, since the available data are the degraded (noisy,
blurred and/or down-sampled) versions of the original im-
age, the sparse coding coefficients are often not accurate
enough if only the local sparsity of the image is consid-
ered, as in many existing sparse representation models. To
make the sparse coding more accurate, a centralized spar-
sity constraint is introduced by exploiting the nonlocal im-
age statistics. The local sparsity and the nonlocal sparsity
constraints are unified into a variational framework for op-
timization. Extensive experiments on image restoration val-
idated that our CSR model achieves convincing improve-
ment over previous state-of-the-art methods.

1. Introduction
Image restoration (IR) aims to recover a high-quality im-

age from its degraded (e.g., noisy, blurred and/or down-
sampled) versions, which may be taken, for example, by
a low-end camera and/or under limited conditions. For an
observed image y, the problem of IR can be expressed by

y = Hx + v, (1)

where H is a degradation matrix, x is the original image
vector and v is the additive noise vector. Due to the ill-
posed nature of IR, the regularization techniques, which
try to incorporate both the observation model and the prior
knowledge of the desired solution into a variational formu-
lation, have been extensively studied [4]. For regulariza-
tion methods, finding and modeling the appropriate prior
knowledge of natural images is one of the most important
concerns, and hence various methods have been proposed to
learn the prior knowledge of natural images [25, 5, 6, 12].

In recent years the sparse representation based modeling
has been proven to be a promising model for image restora-
tion [9, 5, 13, 20, 16, 21, 27, 15, 14]. In the study of human
visual system [23, 24], it has been found that cell receptive
fields code natural images using a small number of struc-
tural primitives sparsely chosen out from an over-complete
code set. Mathematically, a signal x ∈ RN can be repre-
sented as a linear combination of a few atoms from a dictio-
nary Φ, i.e., x ≈ Φα, via l0-minimization:

αx = argmin
α

||α||0, s.t. ||x−Φα||2 < ε, (2)

where || · ||0 counts the number of the non-zero coefficients
in α and ε is a small constant balancing the sparsity and
the approximation error. In practice, the l0-norm is often
replaced by the l1-norm for efficient convex optimization
[13, 9]. On the other hand, compared with the analytically
designed dictionary (e.g., wavelet dictionary), the learned
dictionary [1, 21, 19] from example image patches can bet-
ter adapt to the signal x and characterize the image struc-
tures.

In the scenario of IR, we have some degraded observa-
tion y of the original image x, i.e., y = Hx + v. To recon-
struct x from y, first y is sparsely coded over Φ by solving
the following minimization problem:

αy = argmin
α

||α||1, s.t. ||y − HΦα||2 < ε, (3)

and then the reconstructed x, denoted by x̂, is obtained as
x̂ = Φαy . Clearly, αy is expected to be very close to
αx computed in Eq. (3) so that the estimated image x̂ can
be very close to the true image x. Unfortunately, since y
is noise corrupted, blurred and/or incomplete, the coding
vector αy resolved by Eq. (3) may deviate much from the
desired vector αx, leading to an inaccurate restoration of
the image x. In other words, the model in Eq. (3) can ensure
αy being sparse but cannot ensure αy being as close to αx

as possible.
In this paper, we introduce the concept of sparse coding

noise (SCN) to facilitate the discussion of the problem. The
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SCN of y is defined as

vα = αx −αy. (4)

We can see that given the dictionary Φ, the IR result de-
pends on the level of SCN vα because the image recon-
struction error vx = x̂ − x ≈ Φαy −Φαx = Φvα. The
definition of SCN vα also indicates one way to improve the
quality of IR, that is, reduce the level of vα.

The conventional sparse representation model such as
that in Eq.(2) or Eq.(3) exploits mainly the (patch based) lo-
cal sparsity of natural images. Each patch is coded individ-
ually without considering other patches. Nonetheless, the
sparse coding coefficients α are not randomly distributed
because the image local patches are non-locally correlated.
The nonlocal means (NLM) methods, which aim to ex-
ploit the image nonlocal redundancy, have been success-
fully used in many image processing applications, partic-
ularly in denoising [6]. This implies that the SCN can be
reduced by exploiting the image nonlocal similarity, and
hence the restored image quality can be improved. Indeed,
some recent works, such as [10] and [20], are based on such
considerations. For example, in [20] a group sparse cod-
ing scheme was proposed to code similar patches simulta-
neously, and it achieves impressive denoising results.

In this paper, we propose a centralized sparse represen-
tation (CSR) model to effectively reduce the SCN and thus
enhance the sparsity based IR performance. The basic idea
is to integrate the image local sparsity constraint (i.e., a lo-
cal patch can be coded by a few atoms sparsely selected
from a dictionary) and the centralized sparsity constraint
(i.e., the sparse coding coefficients should be close to their
mean values) into a unified variational framework for opti-
mization. Specifically, in addition to requiring that the cod-
ing coefficients of each local patch are sparse, we also en-
force the sparse coding coefficients to have small SCN via
exploiting the nonlocal similarity induced sparsity, which
can be characterized by the l1-norm. Extensive experiments
on IR are conducted, and the experimental results show
that the proposed CSR algorithm outperforms significantly
many state-of-the-art IR methods.

2. Centralized sparse representation modeling

2.1. The sparse coding noise in image restoration

Following the notation used in [16], we denote by x ∈
RN the original image, and by xi = Rix an image patch
of size

√
n ×

√
n at location i, where Ri is the matrix ex-

tracting patch xi from x at location i. Given a dictionary
Φ ∈ Rn×M , n < M , each patch can be sparsely coded as
xi ≈ Φαi by using some sparse coding algorithm [13, 9].
Then the entire image x can be sparsely represented by the
set of sparse codes {αi}. If the patches are allowed to

(a) (b)

(c) (d)

Figure 1. The distribution of SCN when the Lena image (a) is noisy
and blurred; and (b) is down-sampled. (c) and (d) show the same
distributions of (a) and (b) in log domain, respectively.

be overlapped, we obtain a very redundant patch-based im-
age representation. Reconstructing x from the sparse codes
{αi} is then an over-determined system, and a straightfor-
ward least-square solution is [16]:

x ≈ Φ ◦αx , (
N∑

i=1

RT
i Ri)−1

N∑
i=1

(RT
i Φαi), (5)

where αx denotes the concatenation of all αi. The above
equation is nothing but telling that the overall image is re-
constructed by averaging each reconstructed patch of xi.

In the application of IR, x is not available to code and
what we have is the degraded observation y = Hx + v.
The sparse coding of x is based on y via minimizing

αy = argmin
α

{||y − HΦ ◦α||22 + λ||α||1}. (6)

The image is then reconstructed as x̂ = Φ ◦αy . As we de-
fined and discussed in Eq. (4), coefficients αy will deviate
from αx, and the sparse coding noise (SCN) vα = αy−αx

determines the IR quality of x̂.
Here we perform some experiments to investigate the

statistics of the SCN vα. We use the image Lena as an ex-
ample. The original image x is first blurred (by a Gaussian
blur kernel with standard deviation 1.6), and Gaussian white
noise of standard deviation

√
2 is added to get a noisy and

blurred image y. Then we compute αx and αy by mini-
mizing

αx = argmin
α

{||x−Φ ◦α||22 + λ||α||1}. (7)

and Eq. (6), respectively. The DCT dictionary is adopted
in this experiment. Then the SCN is computed as vα =
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αx − αy . In Fig. 1(a), we plot the distribution of vα cor-
responding to the 4th atom (other atoms exhibit similar dis-
tributions) in the dictionary. In Fig. 1(b), we plot the distri-
bution of vα when the observed data y is first blurred (by a
Gaussian blur kernel with standard deviation 1.6) and then
down-sampled. We can see that the empirical distributions
of the SCN vα are highly peaked at zero and can be well
characterized by Laplacian functions, while Gaussian func-
tions have much bigger fitting error. In Figs. 1(c) and (d) we
show these distributions in log domain to better observe the
fitting of the tails. This observation motivates us to model
the SCN with a Laplacian prior, as will be introduced in
Section 3.

2.2. Centralized sparse representation

It is apparent that suppressing the SCN vα could im-
prove the IR output x̂. However, the difficulty lies in that
the coefficient vector αx is unknown so that vα cannot be
directly measured. Nonetheless, if we could have some rea-
sonably good estimation of αx, denoted by α̂x, available,
then αy − α̂x can be an estimation of SCN αx. Intuitively,
to suppress αx and improve the accuracy of αy , a new
sparse coding model can be

αy = argmin
α

{||y−HΦ◦α||22 +λ||α||1 +γ||α− α̂x||lp}.
(8)

where γ is a constant and the lp-norm (p can be 1 or 2) is
used to measure the distance between α and α̂x. Compared
with Eq. (6), Eq. (8) enforces αy being close to α̂x (so that
the SCN vα can be suppressed) while enforcing αy being
sparse, and hence the resulted sparse code will be more de-
sirable than that by solving Eq. (6). If α̂x = 0 and p = 1,
model in Eq. (8) will be reduced to the conventional model
in Eq. (6).

Now the problem turns to how to find a reasonable esti-
mation of the unknown vector αx. By viewing αx as a ran-
dom variable vector, one good unbiased estimation of αx is
naturally the mean of it; that is, we could set α̂x = E[αx].
In practice, we could approximate E[αx] by E[αy] by as-
suming that the SCN vα is nearly zero mean (please refer
to the empirical observations in Section 2.1), and there is
α̂x = E[αx] ≈ E[αy]. Then Eq. (8) can be converted into

αy = argmin
α

{||y−HΦ◦α||22+λ||α||1+γ||α−E[α]||lp}.
(9)

We call the above model centralized sparse representation
(CSR) because it enforces the sparse coding coefficient α
to approach to its distribution center (i.e. the mean value).

For the sparse code αi on each image patch i, E[αi]
can be nearly computed if we could have enough samples
of αi. Fortunately, in natural images there are often many
nonlocal similar patches to the given patch i. Then E[αi]
can be computed as the weighted average of those sparse

code vectors associated with the nonlocal similar patches
(including patch i) to patch i. To this end, we can form a
cluster, denoted by Ci, for each patch i via block matching
and then average the sparse codes within each cluster.

Denote by αi,j the sparse code of the searched similar
patch j to patch i. Then we use the weighted average of all
αi,j to approximate E[αi]. There is

µi =
∑
j∈Ci

ωi,jαi,j , (10)

where ωi,j is the weight. Like that in nonlocal means meth-
ods [6], ωi,j can be set to be inverse proportional to the
distance between patches i and j:

ωi,j = exp(−||x̂i − x̂i,j ||22/h)/W, (11)

where x̂i = Φα̂i and x̂i,j = Φα̂i,j are the estimates of
patches i and j, W is a normalization factor and h is a pre-
determined scalar.

By taking µi as the approximation of E[αi], the CSR
model in Eq. (9) can be written as:

αy = argmin
α

{||y−HΦ◦α||22+λ||α||1+γ

N∑
i=1

||αi−µi||lp}.

(12)
From Eq. (12) we can more clearly see that the CSR model
unifies the local sparsity (i.e. ||α||1) and nonlocal similarity
induced sparsity (i.e. ||αi−µi||lp) into a unified variational
formulation. By exploiting both the local and nonlocal re-
dundancy, better IR results can be expected.

Eq.(12) actually indicates an iterative minimization ap-
proach to the CSR model. We initialize µi as 0, i.e.,
µ

(−1)
i = 0. Then from some initial sparse coding result,

denoted by α
(0)
y , we can get the initial estimation of x, de-

noted by x(0), via x(0) = Φ ◦ α
(0)
y . Based on x(0) we can

find the similar patches of each local patch i, and hence the
non-local mean of the coding vector of each patch, i.e. µi,
can be updated by α

(0)
y via Eqs. (10) and (11). The updated

mean value, denoted by µ
(0)
i , will be used in the next round

of sparse coding process with the CSR model. Such a pro-
cedure is iterated until convergence. In the jth iteration, the
sparse coding is performed by

α(j)
y = argmin

α
{||y − HΦ ◦α||22 + λ||α||1

+ γ
N∑

i=1

||αi − µ
(j−1)
i ||lp}.

(13)

From the above discussion, it can be seen that the sparse
coding and non-local clustering steps are alternatively im-
plemented in the proposed CSR scheme. During the iter-
ation, the accuracy of sparse code α

(j)
y is gradually im-

proved, which improves the accuracy of non-local cluster-
ing in return, and the improvement of non-local clustering
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further improves the accuracy of sparse coding. Finally, the
desired sparse code αy is obtained when the joint sparse
coding and non-local clustering process falls into a local
minimum. Please note that the model in Eq. (12) is not
convex but it is convex when the mean µi is fixed. That is,
the sparse coding step in Eq. (13) is convex when p ≥ 1.

3. Algorithm of CSR
3.1. The determination of parameters λ and γ

In the proposed CSR model, there are two parameters, λ
and γ, which balance the local redundancy induced sparsity
and the nonlocal redundancy induced sparsity, respectively.
These two parameters can be set empirically using a train-
ing set. However, a more reasonable and adaptive setting
of them could not only improve the convergence speed but
also improve much the IR quality [7]. In this sub-section,
we provide a Bayesian interpretation of the sparse coding
step of the CSR model, and this also presents us an ex-
plicit way to determine the parameters λ and γ. Actually,
in wavelet based image denoising [26], the connection be-
tween wavelet representation and Bayesian framework has
been well established. Such a connection helps to reconcile
the difference between the deterministic and probabilistic
approaches.

From the discussions in Section 2.2, we know that the
CSR model will yield two outputs, the sparse code αy and
the mean µi, whereas we only have interest in the former
one because the image is restored from αy . In other words,
µi or E[αy] is a hidden variable used in the optimization
process. For the convenience of following development, we
let θ = α− E[α]. Then given the observation y, the max-
imum a posterior (MAP) estimation of α and θ can be for-
mulated as:

(αy,θy) = argmax
α,θ

P (α,θ|y). (14)

According to the Bayesian formula, we can have

(αy,θy) = argmax
α,θ

{P (y|α,θ)× P (α,θ)}, (15)

where the two terms correspond to the likelihood and prior
terms, respectively. Following the observation model of Eq.
(1), the likelihood term can be characterized as:

P (y|α,θ) =
1√

2πσn

exp(− 1
2σ2

n

||y − HΦ ◦α||22), (16)

where σn is the standard deviation of the additive Gaussian
noise.

It can be empirically found that α and θ are nearly un-
correlated. For instance, for the nine images used in our de-
blurring experiments (refer to Section 4.1 please), the cor-
relation coefficients between α and θ range from 0.039 to

0.153. Therefore, in this paper we assume that α and θ are
independent of each other and both α and θ are i.i.d. ran-
dom variable vectors. As shown in Fig. 1, the SCN can be
well characterized by the Laplacian distribution. Thus, we
can model the SCN signal θ with i.i.d Laplacian distribu-
tions. Meanwhile, it is well accepted in literature that the
sparse coefficients α can be characterized by i.i.d Lapla-
cian distributions. Hence, the prior term in Eq. (15) can be
expressed as

P (α,θ) =
∏

i

1√
2σi

exp(−|αi|
σi

)×
∏

i

1√
2δi

exp(−|θi|
δi

),

(17)
where αi and θi are the ith elements of α and θ, respec-
tively, and σi and δi are the standard deviations of αi and
θi, respectively.

Substituting Eqs. (16) and (17) into Eq. (15), we can
obtain

αy = argmin
α

{||y − HΦ ◦α||22 +
∑

i

2
√

2σ2
n

σi
||αi||1

+
∑

i

2
√

2σ2
n

δi
||θi||1}.

(18)

By comparing Eq. (18) with Eq. (9), it is obvious that the
l1-norm (i.e. p = 1) should be chosen to characterize the
centralized sparsity term so that the Bayesian optimal esti-
mation of α can be achieved. This is simply because the
distribution of θ can be well modeled as Laplacian. There-
fore, the CSR model in Eq. (9) can be specified as

αy = argmin
α

{||y−HΦ◦α||22+
∑

i

λi||αi||1+
∑

i

γi||θi||1}.

(19)
Finally, comparing Eq. (18) and Eq. (19), we have

λi =
2
√

2σ2
n

σi
, γi =

2
√

2σ2
n

δi
. (20)

In implementation, σi and δi are estimated from the sets
of αi and θi from the collected nonlocal similar patches.
This estimation is more robust than those using only local
patches. λi and γi are then updated with the update of α
and θ in each iteration (or in several iterations).

3.2. The selection of dictionary Φ

In previous sections, we present the CSR model and
the associated algorithms by supposing that dictionary Φ
is given. The proposed CSR is a general model and the
selection of dictionary Φ can be various. For example, the
wavelet dictionary can be used, or a learned dictionary from
example images by using algorithms such as KSVD [1] can
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be used. However, the analytically designed wavelet dic-
tionary and the learned KSVD dictionary are universal dic-
tionaries; that is, they can be used to represent any image
patch but they may lack sufficient flexibility to sparsely rep-
resent a given local patch. In the proposed CSR algorithms,
the many similar patches to a given one are collected. This
motivates us to use an adaptive dictionary to each patch.
Instead of learning a universal dictionary, we learn a local
dictionary for each patch or each cluster of similar patches.
Specifically, we apply PCA to each cluster to learn a dic-
tionary of PCA bases and use this dictionary to code the
patches in this cluster. Such a local PCA strategy has been
used in [28, 8, 15, 14] for image reconstruction.

3.3. Summary of the algorithm

From the analysis in previous sections, we can see that
the CSR model in Eq. (9) or Eq. (12) can be iteratively
solved. From some initialization, once the sparse code αy

is solved, the nonlocal means µi can be calculated, and
then the code αy can be updated by Eq. (19), and so on.
Eq. (19) has two l1-norm constraints, and it can be gen-
erally solved by using the Augmented Lagrange Multiplier
(ALM) methods [3]. In this paper, we extended the iterative
shrinkage (IS) algorithm in [13] from one l1-constraint to
two l1-constraints. Although the IS algorithm needs many
iterations for convergence, it is very simple within each it-
eration. More importantly, the parameters λi and γi in Eq.
(20) can be directly converted into the thresholds in the IS
algorithm. Due to the limit of space, we omit the details
here and interested readers may refer to [13] for more de-
tails.

The main procedures of the proposed CSR based image
restoration algorithm are summarized in Algorithm 1.

Algorithm 1. Image Restoration with CSR
• Initialization: Compute an initial estimate x̂ using
the standard sparse model [13];
• Outer loop: iterate on l = 1, 2, ......, L

- Update the dictionary for each cluster of similar
patches by using PCA;

- Update the regularization parameters (λ and γ)
using Eq. (20);

- Calculate the nonlocal means µ
(l−1)
i from the

sparse codes α
(l−1)
y ;

- Calculate α
(l)
y by solving Eq. (19) via the ex-

tended iterative shrinkage algorithm [13].

4. Experimental results
We conduct extensive experiments on IR to demonstrate

the performance of the proposed CSR model. On image de-
noising, CSR could achieve very similar results to BM3D
[10] and the group sparse coding method [20]. Due to the

limit of space, we only show the results on image deblurring
and super-resolution in this section. The patch size in our
implementation is 6× 6. The source code and more experi-
mental results of the proposed CSR approach can be found
at http://www.comp.polyu.edu.hk/∼cslzhang/CSR.htm.

4.1. Image deblurring

The deblurring performance of the CSR model was veri-
fied both on simulated blur images and real blur images. To
simulate a blur image, the original images were blurred by a
blur kernel and then additive Gaussian noise with standard
deviations σn =

√
2 and σn = 2 were added. Two blur

kernels, a 9 × 9 uniform kernel and a Gaussian blur ker-
nel with standard deviation 1.6, were used for simulation.
For the real motion blurred images, we borrowed the kernel
estimation method from [17] to estimate the blur kernels.

We compared the CSR deblurring approach to several re-
cently developed deblurring methods, i.e., the constrained
TV deblurring (denoted by FISTA) method [2], the SA-
DCT deblurring method [18], and the BM3D deblurring
method [11]. Note that FISTA is a recently proposed TV-
based deblurring approach that can well reconstruct the
piecewise smooth regions. The SA-DCT and BM3D are
two famous image restoration methods that often produce
state-of-the-art image deblurring results.

The PSNR results on a set of 9 photographic images are
reported in Table 1. From Table 1, we can conclude that
the proposed CSR deblurring method significantly outper-
forms other competing methods for both uniform blurring
and Gaussian blurring. The visual comparisons of the de-
blurring methods are shown in Fig. 2, from which we can
see that the CSR model leads to much cleaner and sharper
image edges and textures than other methods. More exam-
ples can be found in the supplementary materials.

We also applied the proposed CSR model to some real
motion blurred images, where the real blurring kernels are
unknown. Since the blurring kernel estimation is a non-
trivial task and it is out of the scope of this paper, we bor-
rowed the blur kernel estimation method from [17] to esti-
mate the blur kernels. The estimated blur kernels were then
fed into the proposed CSR approach. In Fig. 3, we pre-
sented the deblurred images of a real blurring image by the
blind deblurring method of [17] and the proposed CSR. We
can see that the image restored by our approach is much
clearer and much more details are recovered.

4.2. Single image super-resolution

In single image super-resolution, the observed low-
resolution (LR) image is obtained by first blurring with
a blur kernel and then downsampling by a scaling factor.
Hence, recovering the high-resolution (HR) image from a
single LR image is more underdetermined than image de-
blurring. In this subsection, we conducted experiments
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(a) (b) (c) (d)

Figure 2. Image deblurring performance comparison for Starfish image (9× 9 uniform blur, σn =
√

2). (a) Noisy and blurred; (b) FISTA
[2] (PSNR=27.75 dB); (c) BM3D [11] (PSNR=28.61dB); (d) the proposed CSR (PSNR=30.30 dB).

(a) (b) (c) (d)

Figure 3. Deblurring performance comparison for a real blurred image with the blurring kernel estimated using the kernel estimation
approach from [17]. (a) Input blurred image; (b) deblurred image by [17]; (c) the deblurred image by CSR; (d) close-up views.

of single image super-resolution using the proposed CSR
method and other competing methods. The observed LR
image is generated by first blurring an HR image with a
blur kernel, i.e., a 7× 7 Gaussian filter with standard devia-
tion of 1.6, and then downsampling the blurred image by a
scaling factor of 3 in both horizontal and vertical directions.
The additive Gaussian noise with standard deviation of 5 is
also added to the LR images, making this IR problem more
challenging. Since human visual system is more sensitive to
luminance changes, we only apply the IR methods to the lu-
minance component and use the simple bicubic interpolator
for the chromatic components.

We compare the proposed CSR based IR method with
some recently developed image super-resolution methods,
i.e., the softcut method of [12], the TV-based method of
[22] and the sparse representation based method of [27].
Since the sparsity-based method in [27] cannot perform the
resolution upscaling and deblurring simultaneously, as sug-
gested by [27] we apply the iterative back-projection to the
output of the method [27] to remove the blur.

The PSNR results of the competing methods on a set of
9 natural images are reported in Table 2. From Table 2, we
can conclude that the proposed CSR approach significantly
outperforms all the other competing methods. This demon-
strates the superiority of the CSR model for solving image

inverse problems. Some subjective comparison between the
CSR and other methods are shown in Fig. 4. We can see
that the TV-based method [22] tends to generate piecewise
constant structures; the softcut method [12] produces over-
smoothed image local structures; the image edges recon-
structed by the sparsity-based method [27] contain some
visible artifacts. Obviously, the image reconstructed by
CSR gives the best visual quality. The reconstructed edges
are much sharper than all the other three competing meth-
ods, and more image fine structures are recovered.

5. Conclusion

Image restoration (IR) is a fundamental topic in image
processing and computer vision applications, and it has
been widely studied. In this paper, we investigated IR with
the sparse coding techniques. To better understand the ef-
fectiveness of sparse coding for IR, we introduced the con-
cept of sparse coding noise (SCN), and it was empirically
found that SCN follows Laplacian distributions. To sup-
press SCN and thus improve the quality of IR, the central-
ized sparse representation (CSR) model was proposed by
exploiting the image nonlocal self-similarity. In addition to
the local sparsity, we also enforced the sparse coefficients
to have small SCN, i.e., to be close to their distribution cen-
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(a) (b) (c) (d)

Figure 4. Super-resolution performance comparison for Plant image, (scaling factor 3, σn = 0). (a) LR image; (b) TV-based method [22]
(PSNR=31.34dB); (c) Sparsity-based method [27] (PSNR=31.55dB); (d) the proposed CSR method (PSNR=34.00 dB).

Table 1. PSNR(dB) results of the deblurred images.

9×9 uniform blur, σn =
√

2

Images Butterfly Boats C. Man Starfish Parrot Lena Barbara Peppers Leaves Average

FISTA [2] 28.37 29.04 26.82 27.75 29.11 28.33 25.75 28.43 26.49 27.79

SA-DCT [18] 27.50 29.25 27.02 28.11 30.07 28.43 26.58 28.36 27.04 28.04

BM3D [11] 27.21 29.93 27.30 28.61 30.50 28.97 27.99 28.60 27.45 28.51

CSR 29.75 31.10 28.55 30.30 32.09 29.95 27.93 29.64 29.97 29.95

9×9 uniform blur, σn = 2

FISTA [2] 27.73 27.93 26.13 27.50 28.88 27.40 25.24 27.42 26.03 27.14

SA-DCT [18] 26.46 28.14 26.11 27.14 29.10 27.58 25.75 27.57 25.86 27.08

BM3D [11] 26.56 29.21 26.61 27.97 29.75 28.34 27.26 28.02 26.60 27.81

CSR 28.66 30.48 27.68 29.00 30.57 29.23 27.20 29.05 28.64 28.94

Gaussian blur with standard deviation 1.6, σn =
√

2

FISTA [2] 30.36 29.36 26.80 29.65 31.23 29.47 25.03 29.42 29.33 28.97

SA-DCT [18] 29.85 30.28 27.44 30.84 32.46 30.43 27.00 29.22 29.70 29.69

BM3D [11] 29.01 30.63 27.46 30.71 32.22 30.69 28.19 29.03 29.67 29.74

CSR 30.75 31.40 28.24 32.31 33.44 31.23 27.81 30.17 31.44 30.70

Gaussian blur with standard deviation 1.6, σn = 2

FISTA [2] 29.67 27.89 25.94 29.18 30.74 28.00 24.54 27.94 28.62 28.07

SA-DCT [18] 29.42 29.88 26.99 30.04 31.79 29.96 26.08 28.90 29.16 29.13

BM3D [11] 28.56 30.21 27.08 30.23 31.72 30.28 27.02 28.73 29.10 29.21

CSR 30.14 31.19 27.81 31.47 32.60 30.94 26.53 30.03 30.56 30.09

ters. The local and nonlocal redundancy induced sparsity,
which are both characterized by the l1-norm, are unified
into a variational formulation. A Bayesian interpretation of
the CSR model was then provided to accurately determine
the regularization parameters. Experimental results on IR
demonstrated that the CSR image restoration approach can
significantly outperform other leading IR methods.
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